

LA-UR-20-23604

Approved for public release; distribution is unlimited.

Title: Numerical Plasma Physics

Author(s): Kilian, Patrick Frank Heiner

Intended for: Invited Colloquium Talk

Issued: 2020-05-14

Numerical Plasma Physics

Why, how, and what am I missing?

Patrick Kilian

2020-05-15

The Model

The Methods

Time for Questions

Our Model: The Vlasov-Maxwell-System

Plasma Physics is reasonably described by the Vlasov(-Boltzmann) equation

$$\frac{\mathrm{d}}{\mathrm{d}t}f_{s} = \frac{\partial}{\partial t}f_{s} + \vec{v} \cdot \nabla_{x}f_{s} + \frac{q_{s}}{m_{s}} \left(\vec{E} + \frac{\vec{v}}{c} \times \vec{B}\right) \cdot \nabla_{v}f_{s} = \underbrace{\partial_{t}f_{s}}_{coll} \approx 0$$

and Maxwell's equations

$$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \qquad \qquad \nabla \cdot \vec{E} = 4\pi \rho$$

$$\nabla \times \vec{B} = \frac{1}{c} \frac{\partial \vec{E}}{\partial t} + \frac{4\pi}{c} \vec{j} \qquad \qquad \nabla \cdot \vec{B} = 0$$

To close the system we use

$$\rho = \sum_{s} q_{s} \int f_{s} \, \mathrm{d}^{3} v \qquad \qquad \vec{\jmath} = \sum_{s} q_{s} \int \vec{v} \, f_{s} \, \mathrm{d}^{3} v$$

Variations of the Problem

- Keep the collision term → Vlasov-Boltzmann-Maxwell-System
- Add source / sink term for e.g. fusion
- Electrostatic approximation → Vlasov-Poisson-System
- Remove radiation → Vlasov-Darwin-System
- Treat dielectrics \rightarrow treat \vec{E}/\vec{D} and \vec{B}/\vec{H} using materials model

We have a complete and self-consistent mathematical model. Can we go home now? No! The equations are unsolvably hard in the general case. This is why we (have to) do numerics.

Variations of the Problem

- ullet Keep the collision term o Vlasov-Boltzmann-Maxwell-System
- · Add source / sink term for e.g. fusion
- Electrostatic approximation → Vlasov-Poisson-System
- Remove radiation → Vlasov-Darwin-System
- Treat dielectrics \rightarrow treat \vec{E}/\vec{D} and \vec{B}/\vec{H} using materials model

We have a complete and self-consistent mathematical model. Can we go home now? No! The equations are unsolvably hard in the general case. This is why we (have to) do numerics.

Euler vs Lagrange

There is two opposing world views

Eulerian (Stream gauges)

- There is a fixed spatial reference
- We impose a (structured) grid
- Changes is time are for a given location . . .
- ... but might be because a feature moves, or ...
- ... because the feature changes in time.

Lagrangian (Rubber ducks)

- Particles have defined identities
- and we just follow them around and look at their immediate environment
- Changes are for a given particle...
- ... and are due to temporal evolution of features, but ...
- ...the particle might be at different locations over time.

Mixtures such as moving mesh codes and semi-Lagrangian codes of course exist.

Magneto-Hydro-Dynamics (MHD)

- Assume a distribution function with a bunch of parameters (e.g. $\mathcal{M}(n, \vec{u}, T)$)
- Take moments of the Vlasov equation
- Sum over all species (at least electrons and ions)
- Evolution equation for n^{th} moment (ρ, \vec{u}) contains $n + 1^{th}$ moment (\vec{u}, \vec{P})
- Stop after finite number of moments (5, 10) and close with some closure scheme
- Discretize resulting equations (using finite volume or spectral methods)

Biggest advantages

Biggest limitations:

Magneto-Hydro-Dynamics (MHD)

- Assume a distribution function with a bunch of parameters (e.g. $\mathcal{M}(n, \vec{u}, T)$)
- Take moments of the Vlasov equation
- Sum over all species (at least electrons and ions)
- Evolution equation for n^{th} moment (ρ, \vec{u}) contains $n + 1^{th}$ moment (\vec{u}, \vec{P})
- Stop after finite number of moments (5, 10) and close with some closure scheme
- Discretize resulting equations (using finite volume or spectral methods)

Biggest advantages:

- Able to describe large scale system
- Most tractable analytically
- Mature codes available

Biggest limitations:

Magneto-Hydro-Dynamics (MHD)

- Assume a distribution function with a bunch of parameters (e.g. $\mathcal{M}(n, \vec{u}, T)$)
- Take moments of the Vlasov equation
- Sum over all species (at least electrons and ions)
- Evolution equation for n^{th} moment (ρ, \vec{u}) contains $n + 1^{th}$ moment (\vec{u}, \vec{P})
- Stop after finite number of moments (5, 10) and close with some closure scheme
- Discretize resulting equations (using finite volume or spectral methods)

Biggest advantages:

Biggest limitations:

- Changes in the (type of the) distribution function are lost
- All species are the same temperature
- Needs good closure model

Particle-in-Cell (PiC)

- Sample distribution function f_s using macro particles
- Derive evolution equations for those
- Discretize Maxwell's equations using Finite-Difference-Time-Domain (FDTD)
- Close using deposition schemes that compute ρ and \vec{j} from the macro particles

Biggest advantages:

Biggest limitations

Particle-in-Cell (PiC)

- Sample distribution function f_s using macro particles
- Derive evolution equations for those
- Discretize Maxwell's equations using Finite-Difference-Time-Domain (FDTD)
- Close using deposition schemes that compute ρ and $\vec{\jmath}$ from the macro particles

Biggest advantages:

- Captures changes in the distribution functions
- Captures the micro physics
- Simple code

Biggest limitations

Particle-in-Cell (PiC)

- Sample distribution function f_s using macro particles
- Derive evolution equations for those
- Discretize Maxwell's equations using Finite-Difference-Time-Domain (FDTD)
- Close using deposition schemes that compute ρ and \vec{j} from the macro particles

Biggest advantages

Biggest limitations:

- Has to resolve micro-physical scales for stability
- Noise level due to limited particle number
- Huge computational effort

Full Vlasov

- Discretize phase space
- Find evolution equation for the discrete representation of f_s
- Discretize Maxwell's equations in a "compatible" way

Biggest advantages:

- Captures changes in the distribution functions
- Captures the micro physics
- Very low noise level

Biggest limitations

- 6d grids require tons of memory, even at poor resolution
- Tends to generate fine structures in phase space that need to be removed without being too diffusive

Full Vlasov

- Discretize phase space
- Find evolution equation for the discrete representation of f_s
- Discretize Maxwell's equations in a "compatible" way

Biggest advantages:

- Captures changes in the distribution functions
- Captures the micro physics
- Very low noise level

Biggest limitations

- 6d grids require tons of memory, even at poor resolution
- Tends to generate fine structures in phase space that need to be removed without being too diffusive

Full Vlasov

- Discretize phase space
- Find evolution equation for the discrete representation of f_s
- Discretize Maxwell's equations in a "compatible" way

Biggest advantages:

- Captures changes in the distribution functions
- Captures the micro physics
- Very low noise level

Biggest limitations:

- 6d grids require tons of memory, even at poor resolution
- Tends to generate fine structures in phase space that need to be removed without being too diffusive

Hydro-Dynamics (HD)

• The $\vec{B} \rightarrow 0$ limit of MHD

Biggest advantages:

- When you don't have to worry about $\nabla \cdot \vec{B} = 0$, you can treat the remaining physics much better
- Good for very large systems or low degree of ionization
- Many mature codes

Biggest limitations

Ignore magnetic fields, hope for the best

Hydro-Dynamics (HD)

• The $\vec{B} \rightarrow 0$ limit of MHD

Biggest advantages:

- When you don't have to worry about $\nabla \cdot \vec{B} = 0$, you can treat the remaining physics much better
- Good for very large systems or low degree of ionization
- Many mature codes

Biggest limitations

Ignore magnetic fields, hope for the best

Hydro-Dynamics (HD)

• The $\vec{B} \rightarrow 0$ limit of MHD

Biggest advantages:

- When you don't have to worry about $\nabla \cdot \vec{B} = 0$, you can treat the remaining physics much better
- Good for very large systems or low degree of ionization
- Many mature codes

Biggest limitations:

Ignore magnetic fields, hope for the best

Radiation-Magneto-Hydro-Dynamics (RMHD)

- Include some model for the electromagnetic waves that are not directly resolved
- Needs numerical schemes for radiation transport in the optically thin/thick regime
- Popular at LANL

Biggest advantages

- Include the energy transport and pressure of radiation
- Automatically produces synthetic radiation observables

Biggest limitations

- Treatment of $I(\vec{x}, \vec{\Omega}, \nu, t)$ is hard
- Codes tend to be export controlled

Radiation-Magneto-Hydro-Dynamics (RMHD)

- Include some model for the electromagnetic waves that are not directly resolved
- Needs numerical schemes for radiation transport in the optically thin/thick regime
- Popular at LANL

Biggest advantages:

- Include the energy transport and pressure of radiation
- Automatically produces synthetic radiation observables

Biggest limitations

- Treatment of $I(\vec{x}, \vec{\Omega}, \nu, t)$ is hard
- Codes tend to be export controlled

Radiation-Magneto-Hydro-Dynamics (RMHD)

- Include some model for the electromagnetic waves that are not directly resolved
- Needs numerical schemes for radiation transport in the optically thin/thick regime
- Popular at LANL

Biggest advantages:

- Include the energy transport and pressure of radiation
- Automatically produces synthetic radiation observables

Biggest limitations:

- Treatment of $I(\vec{x}, \vec{\Omega}, \nu, t)$ is hard
- Codes tend to be export controlled

Two-Fluid MHD / Multi-Fluid MHD

- Retain separate sets of fluid equations for electrons, protons. (heavier) ions, dust, . . .
- Compute (net) ρ and (total) $\vec{\jmath}$
- Species are coupled through \vec{E} and \vec{B} that is seen by all species
- Possibly source/sink terms for reactions (chemical, fusion, dust aggregation, ...)

Biggest advantages

- Useful for analytic calculations
- Better electric field model
- Includes the Hall effect and diamagnetic drift

Biggest limitations:

- Electrons set small spatial and temporal scale
- Interactions between species can be very complicated (entire reaction networks with high rates)

Two-Fluid MHD / Multi-Fluid MHD

- Retain separate sets of fluid equations for electrons, protons. (heavier) ions, dust, . . .
- Compute (net) ρ and (total) $\vec{\jmath}$
- Species are coupled through \vec{E} and \vec{B} that is seen by all species
- Possibly source/sink terms for reactions (chemical, fusion, dust aggregation, ...)

Biggest advantages:

- Useful for analytic calculations
- Better electric field model
- Includes the Hall effect and diamagnetic drift

Biggest limitations:

- Electrons set small spatial and temporal scale
- Interactions between species can be very complicated (entire reaction networks with high rates)

Two-Fluid MHD / Multi-Fluid MHD

- Retain separate sets of fluid equations for electrons, protons. (heavier) ions, dust, . . .
- Compute (net) ρ and (total) $\vec{\jmath}$
- Species are coupled through \vec{E} and \vec{B} that is seen by all species
- Possibly source/sink terms for reactions (chemical, fusion, dust aggregation, ...)

Biggest advantages:

- Useful for analytic calculations
- Better electric field model
- Includes the Hall effect and diamagnetic drift

Biggest limitations:

- Electrons set small spatial and temporal scale
- Interactions between species can be very complicated (entire reaction networks with high rates)

Hybrid-Kinetic Simulations (Hybrid Codes)

- Fluid equations for some species (often electrons, often without inertia)
- Fully-kinetic for other species (using PiC methods)
- Maxwell's equations usually radiation-free (Darwin or Electrostatic)
- Field Solver often implicit, $\vec{E}(t^{n+1/2})$ problem

Biggest advantages:

- Retains all the kinetic physics of (multiple) ion species
- Much more efficient then PiC, especially in cold plasma
- Longer time scale, large spatial scales than PiC

Biggest limitations

- Whistler waves are $\omega \propto k^2$ without inertia, make problem stiff
- Problems at plasma-vacuum boundaries and large density jumps

Elliptic field solvers tend to limit scalability

Hybrid-Kinetic Simulations (Hybrid Codes)

- Fluid equations for some species (often electrons, often without inertia)
- Fully-kinetic for other species (using PiC methods)
- Maxwell's equations usually radiation-free (Darwin or Electrostatic)
- Field Solver often implicit, $\vec{E}(t^{n+1/2})$ problem

Biggest advantages:

- Retains all the kinetic physics of (multiple) ion species
- Much more efficient then PiC, especially in cold plasma
- Longer time scale, large spatial scales than PiC

Biggest limitations

- Whistler waves are $\omega \propto k^2$ without inertia, make problem stiff
- Problems at plasma-vacuum boundaries and large density jumps

Elliptic field solvers tend to limit scalability

Hybrid-Kinetic Simulations (Hybrid Codes)

- Fluid equations for some species (often electrons, often without inertia)
- Fully-kinetic for other species (using PiC methods)
- Maxwell's equations usually radiation-free (Darwin or Electrostatic)
- Field Solver often implicit, $\vec{E}(t^{n+1/2})$ problem

Biggest advantages:

- Retains all the kinetic physics of (multiple) ion species
- Much more efficient then PiC, especially in cold plasma
- Longer time scale, large spatial scales than PiC

Biggest limitations:

- Whistler waves are $\omega \propto k^2$ without inertia, make problem stiff
- Problems at plasma-vacuum boundaries and large density jumps

Elliptic field solvers tend to limit scalability

Smoothed Particle Hydrodynamics (SPH)

- Sample MHD with little chunks
- Derive equations of motion for these "particles"
- Estimate density by averaging over all neighboring particles within a smoothing length
- Might use a grid or kd-tree to quickly find neighboring particles

Biggest advantages:

- Automatic resolution adaptation. Regions with more particles resolve finer features
- Handles vacuum and low density regions well
- No grid anisotropy

Biggest limitations

- When particles "stack" you get pairing instability
- Can be noisy and surface reconstruction can be difficult

Long-range forces need extra treatment

Smoothed Particle Hydrodynamics (SPH)

- Sample MHD with little chunks
- Derive equations of motion for these "particles"
- Estimate density by averaging over all neighboring particles within a smoothing length
- Might use a grid or kd-tree to quickly find neighboring particles

Biggest advantages:

- Automatic resolution adaptation. Regions with more particles resolve finer features
- Handles vacuum and low density regions well
- No grid anisotropy

Biggest limitations

- When particles "stack" you get pairing instability
- Can be noisy and surface reconstruction can be difficult
- Long-range forces need extra treatment

Smoothed Particle Hydrodynamics (SPH)

- Sample MHD with little chunks
- Derive equations of motion for these "particles"
- Estimate density by averaging over all neighboring particles within a smoothing length
- Might use a grid or kd-tree to quickly find neighboring particles

Biggest advantages:

- Automatic resolution adaptation. Regions with more particles resolve finer features
- Handles vacuum and low density regions well
- No grid anisotropy

Biggest limitations:

- When particles "stack" you get pairing instability
- Can be noisy and surface reconstruction can be difficult
- Long-range forces need extra treatment

Smoothed particle MHD (SPMHD)

- · Surprisingly this exists
- · Each particle carries a magnetic field
- Update equations for \vec{x} , \vec{v} and \vec{B} using quantities interpolated from neighbors

Biggest advantages

- Automatic resolution adaptation. Regions with more particles resolve finer features
- No grid anisotropy

Biggest limitations

- Ensuring $\nabla \cdot \vec{B} = 0$ usually leads to rather diffusive schemes
- Basically no existing codes for the community
- What is the magnetic field in vacuum?

Smoothed particle MHD (SPMHD)

- · Surprisingly this exists
- Each particle carries a magnetic field
- Update equations for \vec{x} , \vec{v} and \vec{B} using quantities interpolated from neighbors

Biggest advantages:

- Automatic resolution adaptation. Regions with more particles resolve finer features
- No grid anisotropy

Biggest limitations

- Ensuring $\nabla \cdot \vec{B} = 0$ usually leads to rather diffusive schemes
- Basically no existing codes for the community
- What is the magnetic field in vacuum?

Smoothed particle MHD (SPMHD)

- Surprisingly this exists
- Each particle carries a magnetic field
- Update equations for \vec{x} , \vec{v} and \vec{B} using quantities interpolated from neighbors

Biggest advantages:

- Automatic resolution adaptation. Regions with more particles resolve finer features
- No grid anisotropy

Biggest limitations:

- Ensuring $\nabla \cdot \vec{B} = 0$ usually leads to rather diffusive schemes
- Basically no existing codes for the community
- What is the magnetic field in vacuum?

Electron MHD (eMHD)

- Fluid equations for electrons
- Ions are immobile

Biggest advantages

- Full anisotropic pressure tensor
- Electron inertia is retained
- Other terms (e.g. $\partial n_e/\partial t$) can be retained

Biggest limitations

- Electron distribution function must remain close to Maxwelliar
- Only useful for limited timescales

Electron MHD (eMHD)

- Fluid equations for electrons
- lons are immobile

Biggest advantages:

- Full anisotropic pressure tensor
- Electron inertia is retained
- Other terms (e.g. $\partial n_e/\partial t$) can be retained

Biggest limitations

- Electron distribution function must remain close to Maxwellian
- Only useful for limited timescales

Electron MHD (eMHD)

- Fluid equations for electrons
- Ions are immobile

Biggest advantages:

- Full anisotropic pressure tensor
- Electron inertia is retained
- Other terms (e.g. $\partial n_e/\partial t$) can be retained

Biggest limitations:

- Electron distribution function must remain close to Maxwellian
- Only useful for limited timescales

Vlasov-Hybrid-Simulations (VHS)

- Use macro particles for time evolution
- Reconstruct f_s on a phase space grid in each timestep
- Take numerical integrals to compute moments of f_s
- Update fields (either electrostatic or electromagnetic)
- Extension to 1d3v Darwin should be useful, relatively easy and worth a publication

Biggest advantages

- Able to simulate VHF propagation with realistic parameters
- Non recurrence problem, low diffusivity in phase space
- Very low noise

Biggest limitations

- Phase space grid requires a lot of memory
- Computationally expensive

Vlasov-Hybrid-Simulations (VHS)

- Use macro particles for time evolution
- Reconstruct f_s on a phase space grid in each timestep
- Take numerical integrals to compute moments of f_s
- Update fields (either electrostatic or electromagnetic)
- Extension to 1d3v Darwin should be useful, relatively easy and worth a publication

Biggest advantages:

- Able to simulate VHF propagation with realistic parameters
- Non recurrence problem, low diffusivity in phase space
- Very low noise

Biggest limitations:

- Phase space grid requires a lot of memory
- Computationally expensive

Vlasov-Hybrid-Simulations (VHS)

- Use macro particles for time evolution
- Reconstruct f_s on a phase space grid in each timestep
- Take numerical integrals to compute moments of f_s
- Update fields (either electrostatic or electromagnetic)
- Extension to 1d3v Darwin should be useful, relatively easy and worth a publication

Biggest advantages:

- Able to simulate VHF propagation with realistic parameters
- Non recurrence problem, low diffusivity in phase space
- Very low noise

Biggest limitations:

- Phase space grid requires a lot of memory
- Computationally expensive

Gyro-kinetic Approximation (GK)

- Assume that particles are very magnetized
- Average over the fast gyration
- Phase space reduces to 5d

Biggest advantages

- Very good for fusion research, up to full device simulations
- Allows 3d2v simulation, which have feasible memory usage
- Allows arbitrary gyrotropic distribution functions

Biggest limitations

- Need to manually include Finite Larmor Radius effects (FLR)
- Derivation of evolution equations tricky
- Needs strong magnetic fields

Gyro-kinetic Approximation (GK)

- Assume that particles are very magnetized
- Average over the fast gyration
- Phase space reduces to 5d

Biggest advantages:

- Very good for fusion research, up to full device simulations
- Allows 3d2v simulation, which have feasible memory usage
- Allows arbitrary gyrotropic distribution functions

Biggest limitations

- Need to manually include Finite Larmor Radius effects (FLR)
- Derivation of evolution equations tricky
- Needs strong magnetic fields

Gyro-kinetic Approximation (GK)

- Assume that particles are very magnetized
- Average over the fast gyration
- Phase space reduces to 5d

Biggest advantages:

- Very good for fusion research, up to full device simulations
- Allows 3d2v simulation, which have feasible memory usage
- Allows arbitrary gyrotropic distribution functions

Biggest limitations:

- Need to manually include Finite Larmor Radius effects (FLR)
- Derivation of evolution equations tricky
- Needs strong magnetic fields

Direct-Stimulation-Monte-Carlo (DSMC)

- Decent simulation of collisions
- Often no fields (or only gravity, or only fixed \vec{E} and \vec{B})

Biggest advantages:

- Very good at rarefied gas flows, contaminant transport, space craft charging
- The correct model when the system size is similar to the mean free path
- · Can handle vacuum and changing ionization fraction

Biggest limitations

- Unaffordable in the collisional regime
- Unnecessary in the collisionless regime
- Limited to subsonic flows

Direct-Stimulation-Monte-Carlo (DSMC)

- Decent simulation of collisions
- Often no fields (or only gravity, or only fixed \vec{E} and \vec{B})

Biggest advantages:

- Very good at rarefied gas flows, contaminant transport, space craft charging
- The correct model when the system size is similar to the mean free path
- Can handle vacuum and changing ionization fraction

Biggest limitations

- Unaffordable in the collisional regime
- Unnecessary in the collisionless regime
- Limited to subsonic flows

Direct-Stimulation-Monte-Carlo (DSMC)

- Decent simulation of collisions
- Often no fields (or only gravity, or only fixed \vec{E} and \vec{B})

Biggest advantages:

- Very good at rarefied gas flows, contaminant transport, space craft charging
- The correct model when the system size is similar to the mean free path
- Can handle vacuum and changing ionization fraction

Biggest limitations:

- Unaffordable in the collisional regime
- Unnecessary in the collisionless regime
- Limited to subsonic flows

Lattice-Boltzmann-Method (LBM)

- Quantized velocities and spatial position
- Simple collision model
- Usually no fields (or only gravity)

Biggest advantages:

- Good with complicated boundary conditions (porous media)
- Good at multi-phase simulations
- Easy to parallelize

Biggest limitations

- No long-range fields due to charged particles
- Limited to subsonic flows

Lattice-Boltzmann-Method (LBM)

- Quantized velocities and spatial position
- Simple collision model
- Usually no fields (or only gravity)

Biggest advantages:

- Good with complicated boundary conditions (porous media)
- Good at multi-phase simulations
- Easy to parallelize

Biggest limitations

- No long-range fields due to charged particles
- Limited to subsonic flows

Lattice-Boltzmann-Method (LBM)

- Quantized velocities and spatial position
- Simple collision model
- Usually no fields (or only gravity)

Biggest advantages:

- Good with complicated boundary conditions (porous media)
- Good at multi-phase simulations
- Easy to parallelize

Biggest limitations:

- No long-range fields due to charged particles
- Limited to subsonic flows

Specialized Codes

- Dispersion solver to find $\omega(\vec{k})$
- Equilibrium solver

I am sure there is **other methods** I did not mention. Sorry if I missed your favorite one. Please tell me about it. Seriously!

Time for Questions

Thanks for listening!

Are there questions or comments?